# Linear Relationships 

Solutions


Curriculum Ready

## Page 4 questions

1. Draw the following lines on the provided axes:
a Line with $x$-intercept 2 and $y$-intercept -1 .
The $x$-intercept is $(2,0)$ and the $y$-intercept is $(0,-1)$
b Line with $y$-intercept 3 and $x$-intercept -4 .
The $y$-intercept is $(0,3)$ and the $x$-intercept $(-4,0)$


## 2. Write the following in gradient $\boldsymbol{x}$-intercept form:

Gradient $x$-intercept form is $y=m x+c$ form. Rearrange each equation into this form.
a $4 x=2 y+1$
$2 y=4 x-1$

$$
\begin{aligned}
y & =\frac{4 x-1}{2} \\
& =\frac{4 x}{2}-\frac{1}{2} \\
& =\frac{4}{2} x-\frac{1}{2} \\
& =2 x-\frac{1}{2}
\end{aligned}
$$

(b) $-y=x+1$
$y=-x-1$

## Page 4 questions

C $x+2 y-6=0$
d $3 x=-9 y$

$$
2 y=-x+6
$$

$9 y=-3 x+0$

$$
y=\frac{-x}{2}+3
$$

$y=\frac{-3}{9} x+0$
$y=-\frac{1}{2} x+3$ or $y=-\frac{x}{2}+3$
$y=-\frac{1}{3} x$ or $y=-\frac{x}{3}$

## Page 5 questions

3. Write in standard form the equation for a line with gradient $m=3$ and $y$-intercept $b=5$

Standard form is $y=m x+c$, where $m$ is the gradient and $c$ the $y$-intercept. From the question $m=3$ and $c=5$ so the standard form of the equation is $y=3 x+5$.

## 4. Write the following in general form:

General form is $a x+b x+c=0$. Rearrange each equation into this form:
a

$$
\begin{aligned}
y & =3 x-7 \\
3 x-7 & =y \\
3 x-y-7 & =0
\end{aligned}
$$

C

$$
\begin{aligned}
y & =3+\frac{x}{4} \\
3+\frac{x}{4} & =y \\
12+x & =4 y \\
x-4 y+12 & =0
\end{aligned}
$$

5. Find the gradient of the line given by $12 x+4 y=8$ (Hint: Write in standard form first)

$$
\begin{aligned}
12 x+4 y & =8 \\
4 y & =-12 x+8 \\
y & =-3 x+2
\end{aligned}
$$

Once the line is in standard form, the gradient $(m)$ can be found by inspection and is 3 in this case.
6. Write the equation for a line with $y$-intercept $b=-2$ and gradient $m=5$ in general form.

The gradient and $y$-intecept are given, so first write the equation in standard form $(y=m x+c)$. Then rearrange into general form $(a x+b y+c=0)$.

$$
\begin{aligned}
y & =5 x-2 \\
5 x-2 & =y \\
5 x-y-2 & =0
\end{aligned}
$$

## Page 7 questions

1. Which of the 2 points $(-1,6)$ or $(-1,5)$ lies on the line $y=-x+4$ ?

Both points have the same $x$-value of -1 . Substitute the $x$-value into the equation of the line and see which point 'works' for the line.

$$
\begin{aligned}
& y=-x+4 \\
& y=-(-1)+4 \\
& y=1+4 \\
& y=5
\end{aligned}
$$

The point $(-1,5)$ works for the equation, as the $y$-value produced by the equation matches the $y$-value of the point. It is then clear that the other point will not work, as we have just shown that $x=-1$ produces $y=5$ not $y=6$.

The point $(-1,5)$ is on the line $y=-x+4$.
2. Find any possible values for $x$ and $y$ if the point $(x, y)$ lies on the line $y=3 x+7$.

Choose any $x$-value you like. I am choosing $x=100$.

$$
\begin{aligned}
& y=3 x+7 \\
& y=3(100)+7 \\
& y=300+7 \\
& y=307
\end{aligned}
$$

so the point $(100,307)$ works for the line $y=3 x+7$.
We can check by substituting the values back into the equation.

$$
\begin{aligned}
y & =3 x+7 \\
307 & =3(100)+7 \\
307 & =300+7 \\
307 & =307
\end{aligned}
$$

The point $(100,307)$ works for the line $y=3 x+7$, which shows that the arithmetic is correct.

## Page 8 questions

3. Find any possible values for $x$ and $y$ if the point $(x, y)$ lies on the line $4 y-16 x+12=0$.

Choose any $x$-value you like. I am choosing $x=2$. First we need to rearrange to make $y$ the subject.

$$
\begin{aligned}
4 y-16 x+12 & =0 \\
4 y & =16 x-12 \\
y & =\frac{16 x-12}{4} \\
y & =\frac{16 x}{4}-\frac{12}{4} \\
y & =4 x-3 \\
y & =4(2)-3 \\
y & =8-3 \\
y & =5
\end{aligned}
$$

So $(2,5)$ is a point on the line $4 y-16 x+12=0$.
We can check this by substituting the values back into the original equation:

$$
\begin{aligned}
4 y-16 x+12 & =0 \\
4(5)-16(2)+12 & =0 \\
20-32+12 & =0 \\
-12+12 & =0 \\
0 & =0
\end{aligned}
$$

Where we see that the equations 'work' for the point $(2,5)$, so the arithmetic is correct.
4. Solve for $x$ if the point $(x, 9)$ lies on the line $2 y-10 x+2=0$.

Rearrange the equation to make $x$ the subject:

$$
\begin{aligned}
2 y-10 x+2 & =0 \\
2 y+2 & =10 x \\
10 x & =2 y+2 \\
x & =\frac{2 y+2}{10}
\end{aligned}
$$

and then substitute $y=9$ :

$$
\begin{aligned}
& x=\frac{2(9)+2}{10} \\
& x=\frac{18+2}{10} \\
& x=\frac{20}{10} \\
& x=2
\end{aligned}
$$

So the point $(2,9)$ is on the line $2 y-10 x+2=0$.

## Page 9 questions

## 5. Are these lines parallel?

Parallel lines have the same gradient. Rewrite in standard form $(y=m x+c)$ and compare gradient ( $m$ ) terms.
a $2 x+2 y=2$ and $2 y=2 x+3$

$$
\begin{aligned}
2 x+2 y & =2 \\
2 y & =2-2 x \\
y & =-x+1 \\
2 y & =2 x+3 \\
y & =x+\frac{3}{2}
\end{aligned}
$$

These lines are not parallel as the first gradient ( -1 ) is different from the second (1).
b) $y=3 x+2$ and $y+3 x=5$

$$
\begin{aligned}
y & =3 x+2 \\
y+3 x & =5 \\
y & =-3 x+5
\end{aligned}
$$

These lines are not parallel as the first gradient (3) is different from the second ( -3 ).

C $y=2 x-3$ and $6 x+3 y-9=0$

$$
\begin{aligned}
y & =2 x-3 \\
6 x+3 y-9 & =0 \\
3 y & =9-6 x \\
y & =-2 x+3
\end{aligned}
$$

These lines are not parallel as the first gradient (2) is different from the second ( -2 ).
d $y-2 x+6=0$ and $4 y=8 x+1$

$$
\begin{aligned}
y-2 x+6 & =0 \\
y & =2 x-6 \\
4 y & =8 x+1 \\
y & =2 x+\frac{1}{4}
\end{aligned}
$$

These lines are parallel as both gradients are the same (2).

## Page 9 questions

6. Find the value of $x$ if the line passing through $(5,10)$ and $(x, 4)$ is parallel to $y=6 x+7$.

Parallel lines have the same gradient.
The gradient of the $y=6 x+7$ line is 6 .
For the second line through $(5,10)$ and $(x, 4)$, use the formula for the gradient of a line between two points and set this equal to 6 .

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
6 & =\frac{10-4}{5-x} \\
6(5-x) & =(10-4) \\
5-x & =\frac{10-4}{6} \\
5-x & =\frac{6}{6} \\
5-x & =1 \\
5-1 & =x \\
x & =4
\end{aligned}
$$

7. If a line has $y$-intercept 4 and is parallel to $y=-5 x-3$, then what is the equation of the line?

Let the new line be $y=m x+c$ where $m$ is the gradient and $c$ in the $y$-intercept.
$m$ must be -5 to be parallel with $y=-5 x-3 . c$ must be 4 as the $y$-intercept is 4 .
The equation of the line is then $y=-5 x+4$.

## Page 13 questions

1. Draw the following graphs using the table method:
a $y=6 x$

| $x$ | -1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| $y$ | -6 | 0 | 6 |


(b) $y=7 x-2$

| $x$ | -0.5 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | -5.5 | -2 | 5 |



## Page 13 questions

C $3 x-y+4=0$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | 1 | 4 | 7 |


d $y=\frac{1}{2} x-4$

| $x$ | -2 | 0 | 2 |
| :---: | :---: | :---: | :---: |
| $y$ | -5 | -4 | -3 |



## Page 14 questions

2. Draw the following lines on a number plane:
a $x=2$
(b) $y=-3$
C $y=4$
d $x=-4$


## Page 15 questions

3. Write the equations of the following lines:

a $x=-1$
(b) $y=1$
C $x=3$
d $y=-4$
4. Write down the coordinates where lines a and d - from the above question - intersect each other.
(a) and d intersect at $(-1,-4)$

## Page 15 questions

## 5. Find the equations of the following lines:

A vertical line passing through points $(-1,5)$ and $(-1,-2)$ :

$$
x=-1
$$

A horizontal line passing through $(0,3)$ :

$$
y=3
$$

A line parallel to the $x$-axis and passing through $(4,2)$ :

$$
y=2
$$

A line parallel to the $y$-axis and passing through $(-3,1)$ :

$$
x=-3
$$



## Page 16 questions

## 6. Draw the following graphs on the same set of axes:

a $y=-x$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | 1 | 0 | -1 |

C $y=x+2$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | 1 | 2 | 3 |

(b) $y=-2 x$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | 2 | 0 | -2 |

d $y=2 x$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | -2 | 0 | 2 |


7. What do you notice about the lines as the value of $m$ increases in their equations?

- If $m$ is positive, the line moves from bottom left to top right
- If $m$ is negative, the line moves from bottom right to top left


## Page 17 questions

8. Draw these lines on the same set of axes below:
a $y=6 x$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | -6 | 0 | 6 |

(b) $y=7 x-2$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | -9 | -2 | 5 |

c $4 x-y=-3$

| $x$ | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| $y$ | -1 | 3 | 7 |



## Page 21 questions

## 1. Find the intercepts of these lines:

a $y=2 x-4$

This equation is in standard form $(y=m x+c)$ so the $y$-intercept is found by reading off the $c$ value, -4 .
Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
& y=2 x-4 \\
& 0=2 x-4 \\
& 4=2 x \\
& 2=x \\
& x=2
\end{aligned}
$$

The $y$-intercept is $(0,-4)$ and $x$-intercept is $(2,0)$.
(b) $x+y=-7$

Set $x=0$ to find $y$-intercept:

$$
\begin{aligned}
x+y & =-7 \\
0+y & =-7 \\
y & =-7
\end{aligned}
$$

Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
x+y & =-7 \\
x+0 & =-7 \\
x & =-7
\end{aligned}
$$

The $x$-intercept is $(-7,0)$ and $y$-intercept is $(0,-7)$.

C $2 x-y+18=0$

Set $x=0$ to find $y$-intercept:

$$
\begin{aligned}
2 x-y+18 & =0 \\
2(0)-y+18 & =0 \\
-y+18 & =0 \\
18 & =y \\
y & =18
\end{aligned}
$$

Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
2 x-y+18 & =0 \\
2 x-(0)+18 & =0 \\
2 x+18 & =0 \\
2 x & =-18 \\
x & =-9
\end{aligned}
$$

The $x$-intercept is $(-9,0)$ and $y$-intercept is $(0,18)$.

## Page 21 questions

(d) $x-3 y-21=0$

Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
x-3(0)-21 & =0 \\
x & =21
\end{aligned}
$$

Set $x=0$ to find $y$-intercept:

$$
\begin{aligned}
0-3 y-21 & =0 \\
3 y & =-21 \\
y & =-7
\end{aligned}
$$

The $x$-intercept is $(21,0)$ and $y$-intercept is $(0,-7)$.
2. Draw the graph of a line with intercepts:
a $x$-intercept -2 and $y$-intercept 4

b $x$-intercept 6 and $y$-intercept -3


## Page 22 questions

3. Use the intercept method to sketch the graphs of the following equations:
a $y=3 x-9$

The equation is in $y=m x+c$ form so the $y$-intercept, -9 can be seen directly.
The $x$-intercept is found by setting $y=0$ and rearranging to find $x$ :

$$
\begin{aligned}
y & =3 x-9 \\
0 & =3 x-9 \\
9 & =3 x \\
3 x & =9 \\
x & =3
\end{aligned}
$$

The $x$-intercept is at $(3,0)$.


## Page 22 questions

(b) $6 y+12 x+30=0$

Set $x=0$ to find $y$-intercept:

$$
\begin{aligned}
6 y+12 x+30 & =0 \\
6 y+12(0)+30 & =0 \\
6 y+30 & =0 \\
6 y & =-30 \\
y & =-5
\end{aligned}
$$

The $y$-intercept is at $(0,-5)$.
Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
6 y+12 x+30 & =0 \\
6(0)+12 x+30 & =0 \\
12 x+30 & =0 \\
12 x & =-30 \\
x & =-\frac{30}{12} \\
& =-\frac{5}{2} \\
& =-2 \frac{1}{2} \\
& =-2.5
\end{aligned}
$$

The $x$-intercept is at $(-2.5,0)$.


## Page 23 questions

4. Graph each pair of lines on the same axis to find the point of intersection:
a $x=1$ and $y=8 x-8$
As the second line is in standard form we can see that the $y$-intercept is at $(0,-8)$.

Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
y & =8 x-8 \\
0 & =8 x-8 \\
8 & =8 x \\
x & =1
\end{aligned}
$$

The $x$-intercept is at $(1,0)$.


From the graph, the point of intersection is $(1,0)$.

## Page 23 questions

b $y=x-5$ and $2 x+y+4=0$
Inspecting $y=x-5$ shows the $y$-intercept is at $(0,-5)$.
Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
& y=x-5 \\
& 0=x-5 \\
& 5=x \\
& x=5
\end{aligned}
$$

The $x$-intercept is at $(5,0)$.

For $2 x+y+4=0$ set $y=0$ to find the $x$-intercept:

$$
\begin{aligned}
2 x+y+4 & =0 \\
2 x+0+4 & =0 \\
2 x+4 & =0 \\
2 x & =-4 \\
x & =-2
\end{aligned}
$$

The $x$-intercept is at $(-2,0)$.
Set $x=0$ to find $y$-intercept:

$$
\begin{aligned}
2 x+y+4 & =0 \\
2(0)+y+4 & =0 \\
y+4 & =0 \\
y & =-4
\end{aligned}
$$

The $y$-intercept is at $(0,-4)$.


From the graph, we can see the point of intersection is $\left(\frac{1}{3},-4 \frac{2}{3}\right)$.

## Page 23 questions

5. Find the point of intersection without drawing any graphs:
a $y=-2$ and $x-2 y-11=0$
As $y$ is already the subject of the first equation, substitute the first equation into the second and solve for $x$.

$$
\begin{array}{r}
x-2 y-11=0 \\
x-2(-2)-11=0 \\
x+4-11=0 \\
x-7=0 \\
x=7
\end{array}
$$

From the first equation we know that $y=-2$, so the point of intersection is $(7,-2)$.
b) $y=5 x-8$ and $6 x+2 y-20=0$

As $y$ is already the subject of the first equation, it is easy to substitute the first equation into the second, and solve for $x$.

$$
\begin{aligned}
6 x+2 y-20 & =0 \\
6 x+2(5 x-8)-20 & =0 \\
6 x+10 x-16-20 & =0 \\
16 x-36 & =0 \\
x & =\frac{36}{16} \\
x & =\frac{9}{4}
\end{aligned}
$$

As $y$ is already the subject of the first equation, substitute $x=\frac{9}{4}$ into the first equation to find $y$.

$$
\begin{aligned}
& y=5 x-8 \\
& y=5\left(\frac{9}{4}\right)-8 \\
& y=\frac{45}{4}-8 \\
& y=\frac{13}{4}
\end{aligned}
$$

The point of intersection is $\left(\frac{9}{4}, \frac{13}{4}\right)$.

## Page 24 questions

6. Draw the following lines on the same set of axes:

- Line 1: $y=3 x+6$
- Line 2: $y=3 x-6$
- Line 3: $y=-2 x+8$

Find intercepts for each line. All three lines are in standard from, so the $y$-intercepts can be found by inspection.

Line 1: $y=3 x+6$

The line $1 y$-intercept is at $(0,6)$.
Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
y & =3 x+6 \\
0 & =3 x+6 \\
-3 x & =6 \\
x & =\frac{6}{-3} \\
x & =-2
\end{aligned}
$$

Line $1 x$-intercept is at $(-2,0)$.

Line 2: $y=3 x-6$

The line $2 y$-intercept is at $(0,-6)$.
Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
y & =3 x-6 \\
0 & =3 x-6 \\
6 & =3 x \\
3 x & =6 \\
x & =\frac{6}{3} \\
x & =2
\end{aligned}
$$

Line $2 x$-intercept is at $(2,0)$.

Line 3: $y=-2 x+8$

The line $3 y$-intercept is at $(0,8)$.

Set $y=0$ to find $x$-intercept:

$$
\begin{aligned}
y & =-2 x+8 \\
0 & =-2 x+8 \\
2 x & =8 \\
x & =\frac{8}{2} \\
x & =4
\end{aligned}
$$

Line $3 x$-intercept is at $(4,0)$.

## Page 24 questions


a What is the point of interception of Line 1 and Line 3?
Substitute Line 1 into Line 3 and solve for $x$ :

$$
\begin{aligned}
y & =-2 x+8 \\
3 x+6 & =-2 x+8 \\
3 x+2 x & =8-6 \\
5 x & =2 \\
x & =\frac{2}{5} \\
& =0.4
\end{aligned}
$$

Substitute this $x$-value into Line 3 to find $y$ :

$$
\begin{aligned}
& y=-2 x+8 \\
& =-2(0.4)+8 \\
& =-0.8+8 \\
& =7.2
\end{aligned}
$$

The point of intersection of Line 1 and Line 3 is (0.4,7.2).
b Will Line 1 and Line 2 intersect at any point?

No.

C Why do you think this is so?
Line 1 and Line 2 have the same gradient. This means they are parallel and will not intersect at any point.

## Page 25 questions

7. Identify whether the following pairs of lines will intersect or not.
a $y=4 x+2$ and $y=4 x-7$

These have the same gradient (4) so they will not intersect.
b) $y=2 x+2$ and $x=-2 x-7$

These have different gradients (2 and -2 ) so they will intersect.

C $x+y=7$ and $y=x+2$
Change the first line to standard form so that the gradient can be seen:

$$
\begin{aligned}
x+y & =7 \\
y & =7-x \\
y & =-x+7
\end{aligned}
$$

The gradients are different ( -1 and 1 ) so the lines will intersect.
d) $3 x+4 y+3=0$ and $6 x+8 y+5=0$

Rearrange both lines to standard form to see the gradients:

$$
\begin{aligned}
3 x+4 y+3 & =0 \\
4 y & =-3 x-3 \\
y & =\frac{-3 x-3}{4} \\
& =-\frac{3}{4} x-\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
6 x+8 y+5 & =0 \\
8 y & =-6 x-5 \\
y & =\frac{-6 x-5}{8} \\
& =\frac{-6}{8} x-\frac{5}{8} \\
& =-\frac{3}{4} x-\frac{5}{8}
\end{aligned}
$$

These lines have the same gradient $-\frac{3}{4}$ so they will not intersect.

## Page 25 questions

8. Use substitution to prove that $y=\frac{1}{2} x+13$ and $y=4 x-1$ intersect at the point $(4,15)$.
(Hint: Show the point of intersection is on both lines)
Substitute $x=4$ into first line:

$$
\begin{aligned}
y & =\frac{1}{2} x+13 \\
& =\frac{1}{2}(4)+13 \\
& =2+13 \\
& =15
\end{aligned}
$$

This shows the point $(4,15)$ is on the first line.

Substitute $x=4$ into the second line:

$$
\begin{aligned}
y & =4 x-1 \\
& =4(4)-1 \\
& =16-1 \\
& =15
\end{aligned}
$$

This shows the point $(4,15)$ is on the second line.

If the same point is on 2 different lines, then it must be the intersection point of the lines.
9. What is the point of intersection of the lines $y=-3$ and $x=17$ ?

The first line is horizontal with all $y$-value being -3 . The second line is vertical with all $x$-values being 17 , so the point of interaction is $(17,-3)$.
10. Find the equation of the horizontal line, exactly in the midle of $y=-4$ and $y=6$.

The new line will also be horizontal, so it will be a $y=$ something line.
Use an average to find a number that is half way between -4 and 6 :

$$
\begin{aligned}
\text { average } & =\frac{-4+6}{2} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

The line exactly in the middle of $y=-4$ and $y=6$ is $y=1$. You can check this by noting that 1 is 5 below 6 , and 5 above -4 .

