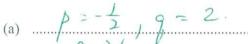

- 1. (a) Factorize $x^2 3x 10$.
 - (b) Solve the equation $x^2 3x 10 = 0$.

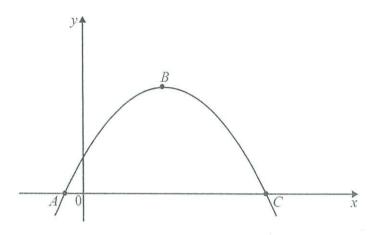
2. The diagram represents the graph of the function

$$f: x \mapsto (x-p)(x-q).$$


- Write down the values of p and q. (a)
- The function has a minimum value at the point C. Find the x-coordinate of C.

Working:

$$f(x) = (x + \frac{1}{2})(x - 2)$$


Working: a) $f(x)=(x+\frac{1}{2})(x-2)$. b) minimum is the midpoint between p and g. $c=\frac{-\frac{1}{2}+2}{2}=\frac{\frac{3}{2}}{2}$ $=\frac{3}{4}$ (a) $p=-\frac{1}{2}$, q=2. (b) c=3/4.

$$c = \frac{-\frac{1}{2} + 2}{2} = \frac{\frac{3}{2}}{2}$$

(Total 4 marks)

3. The diagram shows the parabola y = (7 - x)(1 + x). The points A and C are the x-intercepts and the point B is the maximum point.

Find the coordinates of A, B and C.

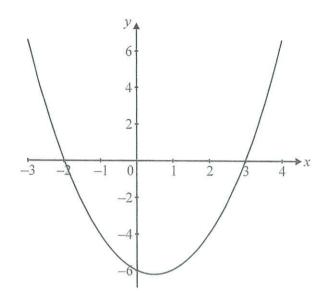
Find the coordinates of
$$A$$
, B and C .

Working:

$$y = (7-x)(1+x)$$

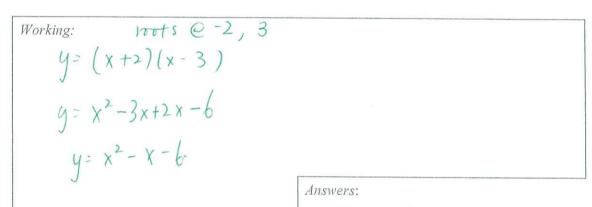
$$x = -1, 7$$

$$y = (7-x)(1+x)$$


$$y = (7-x)(1+x)$$

$$= (7-x)(1+x)$$

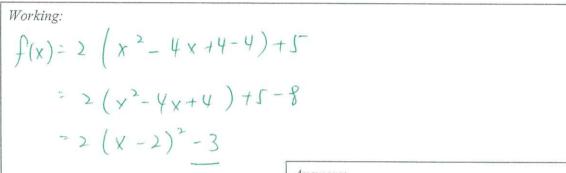
The quadratic equation $4x^2 + 4kx + 9 = 0$, k > 0 has exactly one solution for x. 4. Find the value of k.


Working:
$$\Delta = 0$$
 (one solution).
 $\Delta = b^2 - 4ac$
 $0 = (4k)^2 - 4(4)(9)$ Since $k > 0 > k = 3$
 $0 = 16k^2 - 144$ $k = \pm 3$
 $16k^2 = 144$ Answer:
 $k = 3$ (Total 4 marks)

5. The diagram shows part of the graph with equation $y = x^2 + px + q$. The graph cuts the x-axis at -2 and 3.

Find the value of

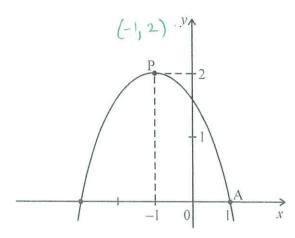
- (a) p;
- (b) q.



(a) P = -1

(b) 9 = 6

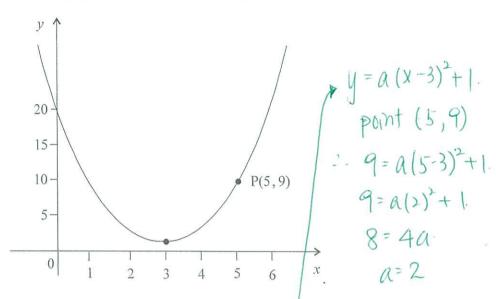
(Total 4 marks)


- Consider the function $f(x) = 2x^2 8x + 5$. 6.
 - Express f(x) in the form $a(x-p)^2 + q$, where $a, p, q \in \mathbb{Z}$.
 - Find the minimum value of f(x).

(a) a=2, p=2, g=-3 - $f(x)=2(x-2)^2-3$ (b) Minimum Value = -3.

(Total 6 marks)

The diagram shows part of the graph of $y = a(x - h)^2 + k$. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). 7.


- Write down the value of (a)
 - (i) h;
 - (ii) k.
- Calculate the value of *a*. (b)

Working:	
y=a(x-h)2+k.	
$y = a(x+1)^2 + 2$	
D= a(1+1)2+2	
-2 = 4a	Answers: $h = -1$

(Total 6 marks)

8. The equation $kx^2 + 3x + 1 = 0$ has exactly one solution. Find the value of k.

Working: $\Delta = 0$ $b^{2}-4ac$ $0 = (3)^{2}-4(k)(1)$ 0 = 9-4k -9 = -4kAnswer: K = 94 (Total 6 marks) 9. The diagram shows part of the graph of the curve $y = a(x - h)^2 + k$, where $a, h, k \in \mathbb{Z}$.

(a) The vertex is at the point (3, 1). Write down the value of h and $\phi f k$.

$$h=3, k=1$$

- (b) The point P (5, 9) is on the graph. Show that a = 2.
- (3)
- (c) Hence show that the equation of the curve can be written as

$$y = 2x^2 - 12x + 19. (1)$$

(Total 6 marks)

(2)

10. The equation $x^2 - 2kx + 1 = 0$ has two distinct real roots. Find the set of all possible values of k.

Working: $\begin{vmatrix} b^2 - 4ac \neq 0 \\ -2k \end{vmatrix}^2 - 4 = 0$ Check will sign dragram $\begin{vmatrix} 4k^2 - 4 \neq 0 \\ 4k^2 = 4 \end{vmatrix}$ Solve $4k^2 = 4$ $k^2 = 1$ Answer: $\begin{vmatrix} -2k \\ 2 \\ 4 \end{vmatrix} = 1$ (Total 6 marks)