C2 Exponentials and Logarithms

1 Express each of the following in the form $\log _{a} b=c$.
a $10^{3}=1000$
b $3^{4}=81$
c $256=2^{8}$
d $7^{0}=1$
e $3^{-3}=\frac{1}{27}$
f $32^{-\frac{1}{5}}=\frac{1}{2}$
g $\quad 19^{1}=19$
h $216=36^{\frac{3}{2}}$

2 Express each of the following using index notation.
a $\log _{5} 125=3$
b $\log _{2} 16=4$
c $5=\log _{10} 100000$
d $\log _{23} 1=0$
e $\frac{1}{2}=\log _{9} 3$
f $\lg 0.01=-2$
g $\log _{2} \frac{1}{8}=-3$
h $\log _{6} 6=1$

3 Without using a calculator, find the exact value of
a $\log _{7} 49$
b $\log _{4} 64$
c $\log _{2} 128$
d $\log _{3} 27$
e $\log _{5} 625$
f $\log _{8} 8$
g $\log _{7} 1$
h $\log _{15} \frac{1}{15}$
i $\quad \log _{3} \frac{1}{9}$
j $\lg 0.001$
k $\log _{16} 2$
l $\log _{4} 8$
m $\log _{9} 243$
n $\log _{100} 0.001$
o $\log _{25} 125$
p $\log _{27} \frac{1}{9}$

4 Without using a calculator, find the exact value of x in each case.
a $\log _{5} 25=x$
b $\log _{2} x=6$
c $\log _{x} 64=3$
d $\lg x=-3$
e $\log _{x} 16=\frac{2}{3}$
f $\log _{5} 1=x$
g $\log _{x} 9=1$
h $\lg 10^{12}=x$
i $2 \log _{x} 7=1$
j $\quad \log _{4} x=1.5$
k $\log _{x} 0.1=-\frac{1}{3}$
l $3 \log _{8} x+1=0$

5 Express in the form $\log _{a} n$
a $\log _{a} 4+\log _{a} 7$
b $\log _{a} 10-\log _{a} 5$
c $2 \log _{a} 6$
d $\log _{a} 9-\log _{a} \frac{1}{3}$
e $\frac{1}{2} \log _{a} 25+2 \log _{a} 3$
f $\log _{a} 48-3 \log _{a} 2-\frac{1}{2} \log _{a} 9$

6 Express in the form $p \log _{q} x$
a $\log _{q} x^{5}$
b $\frac{1}{2} \log _{q} x^{15}$
c $\log _{q} \frac{1}{x}$
d $\log _{q} \sqrt[3]{x}$
e $4 \log _{q} \frac{1}{\sqrt{x}}$
f $\log _{q} x^{2}+\log _{q} x^{5}$
g $\log _{q} \frac{1}{x^{2}}+\operatorname{loq}_{q} \frac{1}{x^{3}}$
h $3 \log _{q} x^{2}-\frac{1}{2} \log _{q} x^{4}$

7 Express in the form $\lg n$
a $\lg 5+\lg 4$
b $\lg 12-\lg 6$
c $3 \lg 2$
d $4 \lg 3-\lg 9$
e $\frac{1}{2} \lg 16-\frac{1}{5} \lg 32$
f $1+\lg 11$
g $\lg \frac{1}{50}+2$
h $3-\lg 40$

8 Without using a calculator, evaluate
a $\log _{3} 54-\log _{3} 2$
b $\log _{5} 20+\log _{5} 1.25$
c $\log _{2} 16+\log _{3} 27$
d $\log _{6} 24+\log _{6} 9$
e $\log _{3} 12-\log _{3} 4$
f $\log _{4} 18-\log _{4} 9$
g $\log _{9} 4+\log _{9} 0.25$
h $2 \lg 2+\lg 25$
i $\frac{1}{3} \log _{3} 8-\log _{3} 18$
j $\frac{1}{3} \log _{4} 64+2 \log _{5} 25$
k $\frac{1}{2} \log _{5}\left(1 \frac{9}{16}\right)+2 \log _{5} 10$
l $\log _{3} 5-2 \log _{3} 6-\log _{3}\left(3 \frac{3}{4}\right)$

C2 Exponentials and Logarithms

1 Express in the form $p \log _{10} a+q \log _{10} b$
a $\log _{10} a b$
b $\log _{10} a b^{7}$
c $\quad \log _{10} \frac{a^{3}}{b}$
d $\log _{10} a \sqrt{b}$
e $\log _{10}(a b)^{2}$
f $\log _{10} \frac{1}{a b}$
g $\log _{10} \sqrt{a^{3} b^{5}}$
h $3 \log _{10} \frac{a^{2}}{\sqrt[3]{b}}$

2 Given that $y=\log _{q} 8$, express each of the following in terms of y.
a $\log _{q} 64$
b $\log _{q} 2$
c $\log _{q} \frac{16}{q}$
d $\log _{q} 4 q^{3}$

3 Given that $a=\lg 2$ and $b=\lg 3$, express each of the following in terms of a and b.
a $\lg 18$
b $\lg 96$
c $\lg \frac{9}{16}$
d $\lg 6-\lg 8$
e $\lg \sqrt{6}$
f $\frac{3}{2} \lg 16+\frac{1}{2} \lg 81$
g $4 \lg 3-3 \lg 6$
h $\lg 60+\lg 20-2$

4 Without using a calculator, evaluate
a $\frac{1}{3} \log _{5} 1000-\frac{1}{2} \log _{5} 4$
b $2 \log _{12} 4+\frac{1}{2} \log _{12} 81$
c $\log _{4} 12+\log _{4} \frac{2}{3}$
d $\frac{\log _{7} 81}{\log _{7} 3}$
e $3 \log _{27} 12-2 \log _{27} 72$
f $\frac{\log _{11} 25}{\log _{11} \frac{1}{5}}$

5 Solve each equation, giving your answers correct to 3 significant figures.
a $\log _{3} x=1.8$
b $\log _{5} x=-0.3$
c $\log _{8}(x-3)=2.1$
d $\log _{4}\left(\frac{1}{2} x+1\right)=3.2$
e $15-\log _{2} 3 y=9.7$
f $\log _{6}(1-5 t)+4.2=3.6$

6 Express in the form $\log _{2}[\mathrm{f}(x)]$
a $5 \log _{2} x$
b $\log _{2} x+\log _{2}(x+4)$
c $2 \log _{2} x+\frac{1}{5} \log _{2} x^{5}$
d $3 \log _{2}(x-2)-4 \log _{2} x$
e $\log _{2}\left(x^{2}-1\right)-\log _{2}(x+1)$
f $\log _{2} x-\frac{1}{2} \log _{2} x^{4}+\frac{1}{3} \log _{2} x^{2}$

7 Solve each of the following equations.
a $\log _{3} x+\log _{3} 5=\log _{3}(2 x+3)$
b $\log _{9} x+\log _{9} 10=\frac{3}{2}$
c $\log _{4} x-\log _{4}(x-1)=\log _{4} 3+\frac{1}{2}$
d $\log _{5} 5 x-\log _{5}(x+2)=\log _{5}(x+6)-\log _{5} x$
e $2 \log _{6} x=\log _{6}(2 x-5)+\log _{6} 5$
f $\log _{7} 4 x=\log _{7} \frac{1}{x-6}+1$

8 Solve each pair of simultaneous equations.
a $\log _{x} y=2$
$x y=27$
c $\log _{2} x=3-2 \log _{2} y$
$\log _{y} 32=-\frac{5}{2}$
e $\log _{a} x+\log _{a} 3=\frac{1}{2} \log _{a} y$
$3 x+y=20$
b $\log _{5} x-2 \log _{5} y=\log _{5} 2$
$x+y^{2}=12$
d $\log _{y} x=\frac{3}{2}$
$x^{\frac{1}{3}}+3 y^{\frac{1}{2}}=20$
f $\log _{10} y+2 \log _{10} x=3$
$\log _{2} y-\log _{2} x=3$

C2 Exponentials and Logarithms

1 Find, to 3 significant figures, the value of
a $\log _{10} 60$
b $\log _{10} 6$
c $\log _{10} 253$
d $\log _{10} 0.4$

2 Solve each equation, giving your answers to 2 decimal places.
a $10^{x}=14$
b $2\left(10^{x}\right)-8=0$
c $10^{3 x}=49$
d $10^{x-4}=23$
e $10^{2 x+1}=130$
f $100^{x}-5=0$

3 Show that $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$, where a, b and c are positive constants.
4 Find, to 3 significant figures, the value of
a $\log _{2} 7$
b $\log _{20} 172$
c $\log _{5} 49$
d $\log _{9} 4$

5 Solve each equation, giving your answers to 3 significant figures.
a $3^{x}=12$
b $\quad 2^{x}=0.7$
c $8^{-y}=3$
d $4^{\frac{1}{2} x}-0.3=0$
e $5^{t+3}=24$
f $\quad 16-3^{4+x}=0$
g $7^{2 x+4}=12$
h $5\left(2^{3 x+1}\right)=62$
i $\quad 4^{2-3 x}=32.7$
j $\quad 5^{x}=6^{x-1}$
k $7^{y+2}=9^{y+1}$
l $4^{5-x}=11^{2 x-1}$
m $4^{\frac{1}{2} x+3}-5^{1-2 x}=0$
n $2^{3 y-2}=3^{2 y+5}$
o $7^{2 x+5}=7\left(11^{3 x-4}\right)$
p $3^{2 x}=3^{x-1} \times 2^{4+x}$

6 Solve the following equations, giving your answers to 2 decimal places where appropriate.
a $2^{2 x}+2^{x}-6=0$
b $3^{2 x}-5\left(3^{x}\right)+4=0$
c $5^{2 x}+12=8\left(5^{x}\right)$
d $2\left(4^{x}\right)+3\left(4^{-x}\right)=7$
e $\quad 2^{2 y+1}+7\left(2^{y}\right)-15=0$
f $3^{2 x+1}-17\left(3^{x}\right)+10=0$
g $25^{t}+5^{t+1}-24=0$
h $3^{2 x+1}+15=2\left(3^{x+2}\right)$
i $3\left(16^{x}\right)-4^{x+2}+5=0$

7 Sketch each pair of curves on the same diagram, showing the coordinates of any points of intersection with the coordinate axes.
a $y=2^{x}$
$y=5^{x}$
b $y=3^{x}$
$y=\left(\frac{1}{3}\right)^{x}$
c $y=4^{x}$
$y=4^{x}-1$
d $y=2^{x}$
$y=2^{x+3}$

8 A curve has the equation $y=2+a^{x}$ where a is a constant and $a>1$.
a Sketch the curve, showing the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
Given also that the curve passes through the point $(3,29)$,
b find the value of a.

The diagram shows the curve with equation $y=2^{x}-5$ which intersects the coordinate axes at the points A and B. Find the length $A B$ correct to 3 significant figures.

C2 Exponentials and Logarithms

1 Given that $a=\log _{10} 2$ and $b=\log _{10} 3$, find expressions in terms of a and b for
a $\log _{10} 1.5$,
b $\log _{10} 24$,
c $\log _{10} 150$.
2 Find, to an appropriate degree of accuracy, the values of x for which
a $4 \log _{3} x-5=0$,
b $\log _{3} x^{3}-5 \log _{3} x=4$.
3 a Given that $p=\log _{2} q$, find expressions in terms of p for

$$
\begin{array}{ll}
\text { i } & \log _{2} \sqrt{q} \\
\text { ii } & \log _{2} 8 q \tag{4}
\end{array}
$$

b Solve the equation

$$
\begin{equation*}
\log _{2} 8 q-\log _{2} \sqrt{q}=\log _{3} 9 \tag{3}
\end{equation*}
$$

4 An initial investment of $£ 1000$ is placed into a savings account that offers 2.2% interest every 3 months. The amount of money in the account, $£ P$, at the end of t years is given by

$$
P=1000 \times 1.022^{4 t}
$$

Find, to the nearest year, how long it will take for the investment to double in value.
5

The diagram shows the curve with equation $y=\left(\frac{1}{3}\right)^{x}-4$.
a Write down the coordinates of the point where the curve crosses the y-axis.
The curve has an asymptote with equation $y=k$.
b Write down the value of the constant k.
c Find the x-coordinate of the point where the curve crosses the x-axis.
6 a Solve the equation

$$
\begin{equation*}
\log _{3}(x+1)-\log _{3}(x-2)=1 \tag{3}
\end{equation*}
$$

b Find, in terms of logarithms to the base 10 , the exact value of x such that

$$
\begin{equation*}
3^{2 x+1}=2^{x-4} \tag{3}
\end{equation*}
$$

7 a Given that $t=2^{x}$, write down expressions in terms of t for
$\begin{array}{ll}\text { i } & 2^{x-1}, \\ \text { ii } & 2^{2 x+1} .\end{array}$
b Hence solve the equation

$$
\begin{equation*}
2^{2 x+1}-14\left(2^{x-1}\right)+6=0 \tag{5}
\end{equation*}
$$

8 Find the values of x for which
a $\log _{2}(3 x+5)+\log _{5} 125=7$,
b $\log _{2}(x+1)=5-\log _{2}(3 x-1)$.
$9 \quad$ Given that $\quad \log _{a}(x+4)=\log _{a} \frac{x}{4}+\log _{a} 5$,
and that $\quad \log _{a}(y+2)=\log _{a} 12-\log _{a}(y+1)$,
where $y>0$, find
a the value of x,
b the value of y,
c the value of the logarithm of x to the base y.
10 A colony of fast-breeding fish is introduced into a large, newly-built pond. The number of fish in the pond, n, after t weeks is modelled by

$$
n=\frac{18000}{1+8 c^{-t}}
$$

a Find the initial number of fish in the pond.
Given that there are 3600 fish in the pond after 3 weeks, use this model to
b show that $c=\sqrt[3]{2}$,
c find the time taken for the initial population of fish to double in size, giving your answer to the nearest day.

11 a Given that $y=\log _{8} x$, find expressions in terms of y for
i $\log _{8} x^{2}$,
ii $\log _{2} x$.
b Hence, or otherwise, find the value of x such that

$$
\begin{equation*}
3 \log _{8} x^{2}+\log _{2} x=6 \tag{3}
\end{equation*}
$$

12 Solve the simultaneous equations

$$
\begin{align*}
& \log _{2} y=\log _{2}(3-2 x)+1 \\
& \log _{4} x+\log _{4} y=\frac{1}{2} \tag{8}
\end{align*}
$$

13 a Sketch on the same diagram the curves $y=2^{x}+1$ and $y=\left(\frac{1}{2}\right)^{x}$, showing the coordinates of any points where each curve meets the coordinate axes.

Given that the curves $y=2^{x}+1$ and $y=\left(\frac{1}{2}\right)^{x}$ intersect at the point A,
b show that the x-coordinate of A is a solution of the equation

$$
\begin{equation*}
2^{2 x}+2^{x}-1=0 \tag{2}
\end{equation*}
$$

c hence, show that the y-coordinate of A is $\frac{1}{2}(\sqrt{5}+1)$.
14 a Show that $x=1$ is a solution of the equation

$$
\begin{equation*}
2^{3 x}-4\left(2^{2 x}\right)+2^{x}+6=0 \tag{1}
\end{equation*}
$$

b Show that using the substitution $u=2^{x}$, equation (I) can be written as

$$
\begin{equation*}
u^{3}-4 u^{2}+u+6=0 \tag{2}
\end{equation*}
$$

c Hence find the other real solution of equation (I) correct to 3 significant figures.

