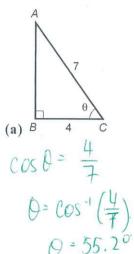
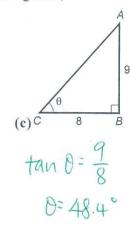
CHAPTER 11

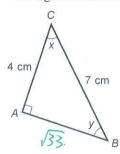
Name : _____(


Class: Date:

Marks: /100

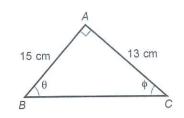

Introduction to Trigonometric Ratios

[Time allowed: 35 minutes]


1. Find θ or x in the following. (Give your answers correct to 3 significant figures.)

(b)
$$\frac{10}{8}$$
 C $\frac{10}{10}$ $\frac{10}{10}$

2. The figure shows $\triangle ABC$.


- (a) Find the length of AB. (Leave your answer in surd form.)
- (b) Find the value of tanx. (Leave your answer in surd form.)
- (c) Find x and y. (Give your answers correct to 3 significant figures.)

a)
$$AB = \sqrt{33}$$

b) $tan X = \frac{\sqrt{33}}{4}$

c)
$$\tan x = \frac{33}{4}$$

 $x = \tan^{-1} \left(\frac{33}{4} \right)$
 $= 55.15^{\circ}$
 $= 55.2^{\circ}$

$$tany = \frac{4}{\sqrt{33}}$$
 $y = tan^{-1} \left(\frac{4}{\sqrt{83}}\right)$
 $= 13.2^{\circ}$

2. The figure shows $\triangle ABC$.

- (a) Find the length of BC. (Give your answer correct to 3 significant figures.)
 - (b) Find the value of $\tan\theta + 2\cos\phi$. (Give your answer correct to 3 significant figures.)

$$3C = \sqrt{394}$$

b).
$$\tan \theta = \frac{13}{15}$$
.
 $\cos \phi = \frac{13}{19.8}$

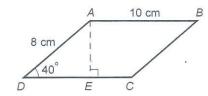
$$\frac{1}{1} + \frac{13}{15} + 2 \left(\frac{13}{19.8} \right)$$

$$= 2.1798$$

$$= 2.18 \text{ (1)}$$

3. Find θ in the following. (Give your answers correct to 3 significant figures.)

(a)
$$2 \tan \theta = 3$$


(b)
$$\sin \theta = 3 \tan 30^\circ - \cos 18^\circ$$

(c)
$$3\cos(\theta - 38^{\circ}) = 1$$

a)
$$\tan \theta = \frac{3}{2}$$

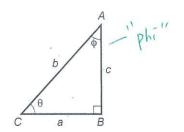
 $\theta = 56.3^{\circ}$

c)
$$\cos (\theta - 38^{\circ}) = \frac{1}{3}$$

 $0 - 38^{\circ} = \cos^{-1} \frac{1}{3}$
 $0 = 70.528 + 38$
 $= 146.52$
 $= 108.52^{\circ}$
 $= 109^{\circ}$

4.In the figure, ABCD is a parallelogram.

- (a) Find the length of AE. (Give your answer correct to 3 significant figures.)
- (b) Find the area of parallelogram ABCD. (Give your answer correct to 3 significant figures.)


a)
$$\sin 40^{\circ} = \frac{AC}{8}$$

 $AE = 5.14$

5. The figure shows a pendulum of 20 cm long. When the pendulum swings, the distance between the highest point and the lowest point is 3 cm. What is the largest angle for each swing of the pendulum? (Give your answer correct to 3 significant figures.)

$$\begin{cases} 20-3 & \cos \theta = \frac{17}{20} \\ = 17 & \theta = \cos^{-1}(\frac{17}{20}) \\ = 31.79^{\circ} \end{cases}$$

CHALLENGE

6.The figure shows $\triangle ABC$.

- (a) Express $\sin\theta$ and $\cos\theta$ in terms of a, b and c.
- (b) Express $\sin \phi$ and $\cos \phi$ in terms of a, b and c.
- (c) (i) Write down the relation between $a^2 + c^2$ and b^2 .
 - (ii) From the results of (a) and (c)(i), find the value of $\sin^2 \theta + \cos^2 \theta$.
- (d) (i) Find the value of $\theta + \phi$.
 - (ii) From the results of (a), (b) and (d)(i), find the relation between $\sin(90^{\circ} \theta)$ and $\cos\theta$.

a)
$$sm\theta = \frac{c}{b}$$

b). $sm\phi = \frac{a}{b}$
 $cos\phi = \frac{c}{b}$
 $cos\phi = \frac{c}{b}$

c) 1).
$$b^2 = a^2 + c^2$$
.

ii)
$$\sin^2\theta + \cos^2\theta = \left(\frac{a}{b}\right)^2 + \left(\frac{a}{b}\right)^2$$

$$= \frac{c^2 + a^2}{b^2}$$

$$= \frac{b^2}{b^2}$$

(i)
$$\sin (90^{\circ}-0) = \sin \phi$$

$$\frac{a}{b} = \cos \theta$$

$$-\frac{a}{b}$$
End of Paper –