Name: \qquad Date: \qquad Period: \qquad

7.1 Intro to Logarithmic Functions

Complete the table below for the function $f(x)=2^{x}$. Then, reverse the coordinates and enter them in Table 2.

Table 1

x	$f(x)$
-2	
-1	
0	
1	
2	
3	

Table 2

x	$f(x)$

Plot the points from each table on the graph below. Plot Table 1 in blue ink, and plot Table 2 in black. Finally, draw in the line $y=x$ in red ink.

What is the relationship between the blue graph and the black graph?

Remember that when you switch the X and Y coordinates of a function, you create its inverse. The inverse of an Exponential function is a Logarithmic Function. The inverse of the function $y=2^{x}$ is the function $y=\log _{2} X$ (read Log base 2 of X). If the function had been $y=3^{x}$, its inverse would have been $y=\log _{3} x$.

Find the value of each log:

Exponential Form		Logarithmic Form
$2^{x}=8$	means	$\log _{2} 8=$
$2^{x}=16$	means	$\log _{2} 16=$
$2^{x}=1$	means	$\log _{2} 1=$
$2^{x}=1 / 2$	means	$\log _{2}(1 / 2)=\square$
$2^{x}=N$	means	$\log _{2} N=$

logarithm not be?

Why not?\end{array}\right]\)

Definition of Logarithm:
If b and N are positive numbers $(b \neq 1), \log _{b} N=k$ if and only if $b^{k}=N$.

The base that your calculator uses is base 10. When you see $y=\log X$, it is assumed that you are using base 10. This is what it known as the Common Log.

Rewrite $y=\log X$ using exponential notation. \qquad
The parent function of a Logarithmic function is $y=\log x$. A sample Logarithmic function (not necessarily $y=\log x$ exactly) is sketched below.

1. Identify a reasonable domain for this function:
2. Identify a reasonable range for this function:
3. Is there an X-intercept? If yes, what is it?
4. Is there a y-intercept? If yes, what is it?

5. Graph the function $y=\log x$ and sketch it below (use a couple of specific points).
6. Identify the domain for this function.
7. Identify the range for this function.
8. Does the function ever cross the x-axis? If yes, identify the x-intercept.
9. Does the function ever cross the y-axis? If yes, identify the y-intercept.

10. Sketch the graphs of:
a. $y=\log x+1$
b. $y=\log x-2$
c. $y=\log (x-2)$
d. $y=\log (x+2)$
11. Now compare the graphs of $y=\log x$ and $y=\log (x-1)+2$. What is different and what is the same about the two graphs?

12. Now sketch the graphs of:
a. $y=2 \log (x)$
b. $y=.5 \log (x)$
c. $y=-\log (x)$
13. What does putting multiplying by a negative do to the graph?
14. Write the equation of a graph that is a reduction of the graph of $y=\log (x)$ by a factor of .5.
15. Write the equation of a graph that is an enlargement of the graph of $y=\log (x)$ by a factor of 5 .
