Name:_

7.1 Intro to Logarithmic Functions

Complete the table below for the function $f(x) = 2^x$. Then, reverse the coordinates and enter them in Table 2.

Table 1

Table 2

х	f(x)
-2	
-1	
0	
1	
2	
3	

X	f(x)

Plot the points from each table on the graph below. Plot Table 1 in blue ink, and plot Table 2 in black. Finally, draw in the line y=x in red ink.

Remember that when you switch the X and Y coordinates of a function, you create its inverse. The inverse of an Exponential function is a Logarithmic Function. The inverse of the function $y=2^{x}$ is the function $y=log_{2}X$ (read Log base 2 of X). If the function had been $y=3^{x}$, its inverse would have been $y=log_{3}X$.

Find the value of each log:

<u>Exponential</u>	Form	<u>Logarithmic Form</u>	What number can the base of a logarithm not be?
2 [×] =8	means	log28 =	Why not?
2 [×] =16	means	log216 =	
2 [×] =1	means	log ₂ 1 =	
2 [×] =1/2	means	log ₂ (1/2) =	
2 [×] =N	means	log ₂ N =	

Definition of Logarithm:

If b and N are positive numbers ($b \neq 1$), log _b N=k if and only if $b^{k}=N$.

The base that your calculator uses is base 10. When you see y=log X, it is assumed that you are using base 10. This is what it known as the Common Log.

Rewrite y = log X using exponential notation._

The parent function of a Logarithmic function is $y = \log x$. A sample Logarithmic function (not necessarily $y = \log x$ exactly) is sketched below.

- 1. Identify a reasonable domain for this function:
- 2. Identify a reasonable range for this function:
- 3. Is there an X-intercept? If yes, what is it?
- 4. Is there a Y-intercept? If yes, what is it?

- 5. Graph the function $y = \log x$ and sketch it below (use a couple of specific points).
- 6. Identify the domain for this function.
- 7. Identify the range for this function.
- 8. Does the function ever cross the x axis? If yes, identify the x-intercept.
- 9. Does the function ever cross the y-axis? If yes, identify the y-intercept.

- 10. Sketch the graphs of:
 - a. $y = \log x + 1$ b. $y = \log x 2$ c. $y = \log(x 2)$ d. $y = \log(x + 2)$
- 11. Now compare the graphs of $y = \log x$ and $y = \log(x - 1) + 2$. What is different and what is the same about the two graphs?

12. Now sketch the graphs of:

a. y=2log(x) b. y=.5log(x) c. y=-log(x)

- 13. What does putting multiplying by a negative do to the graph?
- Write the equation of a graph that is a reduction of the graph of y= log(x) by a factor of .5.

SATEC/Algebra II/Logarithmic/7.1 Introduction through Inverses/Rev. 7-01

15. Write the equation of a graph that is an enlargement of the graph of y=log(x) by a factor of 5.