Y11 MATHEMATICAL STUDIES - SAW REVIEW 2012 solutions

1. (a)

$L(\mathrm{~cm})$	f	Σf
≤ 29	2	2
≤ 31	4	6
≤ 33	8	14
≤ 35	21	35
≤ 37	30	65
≤ 39	18	83
≤ 41	12	95
≤ 43	5	100

Notes: Award (Al) for four correct entries in the column headed Σf.
Award (A2) for all 8 correct .
(b)

(A3) 3
Notes: Award (Al) for both axes and correct scale. Award [1/2 mark] for each correctly plotted point and round up to a maximum of [2 marks].
(c) (i) Median length of mackerel $=36 \mathrm{~cm} \pm 0.2 \mathrm{~cm}$
(ii) Interquartile range of mackerel length $=3.8 \pm 0.2 \mathrm{~cm}$
(A1) 4^{*}
*(read from candidate's curve)
2. (a)

Time less than (mins)	Cumulative frequency
10.5	0
15.5	7
20.5	20
25.5	45
30.5	73
35.5	93
40.5	100

(A2) 2
Note: Award (A1) for each correct column
(b)

Note: Award (A1) for the correct scale and labelling.
Award (A2) for plotting 6 or 7 points correctly, (A1) for plotting 4 or 5 points correctly.
(c) (i) 12 ± 1 students (allow $\mathbf{f t}$)
(ii) 31 ± 0.5 minutes (allow $\mathbf{f t}$)
(A1) 2
3. (a) $\mathrm{Mean}=\frac{60}{10}$

$$
=6
$$

(A1) (C1)
(b) Mode $=2$
(A1) (C1)
(c) $2,2,2,4,5,6,8,9,10,12$

Median $=\frac{5 \uparrow+6}{2}$
$=5.5$
(A1) (C2)
4. (a) 19 or 20 people
(b) Median salary $=15000$ GBP
(c) 80% of 200
$=160$
23000 ± 500
5. (a) 63 kg
(A1) 1
(b) (i) 70.5 kg
(G1)
(ii) 14.6 kg (also accept 15.2 kg)
(G1) 2
(c) Total weight of 12 students $=846 \mathrm{~kg}$

Total weight of 11 students $=11 \times 70=770 \mathrm{~kg}$
Weight of student who left $=846-770=76 \mathrm{~kg}$
6. (a) Median $=45$

Note: Accept 45.5
(b) 53-37 for identifying correct quartiles
$=16$ for correct answer to subtraction
Note: (ft) on their quartiles
(A1)
(C1)
(C2)
(c)

Median marked correctly.
Box with ends at candidate's quartiles.
End points at 21 and 72 joined to box with straight lines.
(A1)(ft)
(A1)(ft)
(A1)
Note: Award (A0) if lines go right through the box.
(C3)
7. (a) At B , the gradient is zero.

From B to C , the gradient is negative.
At C , the gradient is zero.
From C to D , the gradient is positive.
At D , the gradient is zero.
Note: Award [1⁄2 mark] for each correct statement and round up.
(b) Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{f(a+4)-f(a)}{(a+4)-(a)}$
Note: A ward (M1) for $f(a+4)$
$=\frac{f(a+4)-f(a)}{4}$
(A1) 3
8. (a) $2 x+y$
(b) $2500=2 x+y$
$2500-2 x=y$
(AG) 1
(c) (i) Area $A(x)=x y$

$$
\begin{align*}
& =x(2500-2 x) \tag{M1}\\
& =2500 x-2 x^{2} \tag{M1}
\end{align*}
$$

(AG) 2
(ii) $A^{\prime}(x)=2500-4 x$
(A1) 1
(iii) $A^{\prime}(x)=0$
$0=2500-4 x$
$4 x=2500$
$x=625$
(A1) 3

$$
\text { (iv) } \begin{array}{ll}
& A(x)=2500 x-2 x^{2} \\
& A(625)=2500 \times 625-2(625)^{2} \tag{M2}\\
=781250 \\
= & 781000 \mathrm{~m}^{2}
\end{array}
$$

(A1) 3
9. (a)

For labels and scales. (A1)
3 maxima drawn.
2 minima drawn.
General shape
(A2) 5
(b) $(0.827,4.12)$
(c) $0,1.8,3.6,5.4,7.2,9$ (for any one of these answers).
(d) $r=1$
(G2)
Perfect positive correlation.
(R1) 3
(e) $y=3 x$ (accept $y=3 x+0.000274$)
(f) line on graph
(G2) 2
(g) $(0,0)$ or $(1.16,3.48)$
(G1) (G1) 2
10. (a)

For correct axes from 0 to 4 .
(A1)
(A1)
(A1) 4
(b) $\quad(0.347,0.121)$ or $x=0.347, y=0.121$ (by GDC)
(G1)(G1)
$(1.53,2.35)$ or $x=1.53, y=2.35$.
(G1)(G1)
4
(c) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}}$ for losing the constant.

For attempting to write $\frac{1}{x}$ as a power (can be implied).
For correct answer $\frac{1}{x^{2}}$ or x^{-2}.
(ii) 1
(A1) 4
(d) For using $y=m x+c$ or equivalent with their m, to find c.
$c=1$
$y=x+1$
(M1)
(A1) 3
11. (a) $f^{\prime}(x)=3 x^{2}-6 x+3$ 2
(b)

x	-1	0	1	2	3
$f(x)$	-7	0	1	2	9
$f^{\prime}(x)$	12	$\mathbf{3}$	0	$\mathbf{3}$	12

(A3) 3
(c)

Note: The graph does not have to be on graph paper as (A2) 2 long as it is reasonable.
(d) 12
(A1) 1
12. (a) $3 x^{-2}$
(A1) (C1)
Note: Award mark for -2.
(b) $-2 \times 3 x^{-3}$
(A1)(A1)
Note: Award (A1) for -2×3, (A1) for -3 .

$$
\begin{align*}
&=-6 x^{-3} \tag{A1}\\
&=-\frac{6}{x^{3}}
\end{align*}
$$

(A1)(A1) (C5)
Note: Award (A1) for positive power on denominator, (A1) for 3.
13. (a) $f^{\prime}(x)=3 x^{2}+14 x-5$
$(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{A} 1) \quad 3$
(b) $f^{\prime}(1)=3+14-5=12$
(M1)(A1) 2
(c) $3 x^{2}+14 x-5=0$
$(3 x-1)(x+5)=0$
$x=\frac{1}{3}$ or -5
(A1)(A1) (or (G3)) 3
(d) $\left(\frac{1}{3}, 3.15\right)(-5,79)$
(A1)(A1) (or (G2)) 2
(e)

Note: Award (A1) for axes labelled, (A1) for maximum, (A1) for minimum, (A1) for y-intercept.
14. (a) (i) $\quad v(1)=1^{3}-4(1)^{2}+4(1)$ $=1 \mathrm{~ms}^{-1}$
(ii) $\quad v(0.5)=(0.5)^{3}-4(0.5)^{2}+4(0.5)$

$$
\begin{equation*}
=1.125 \mathrm{~ms}^{-1} \text { accept } 1.13 \text { (3 s.f.) } \tag{A1}
\end{equation*}
$$

(b) $\quad a=v(1.5)=1.5^{3}-4(1.5)+4(1.5)$

$$
\begin{equation*}
=0.375 \tag{A1}
\end{equation*}
$$

$$
\begin{aligned}
b=v(3) & =3^{3}-4\left(3^{2}\right)+4(3) \\
& =3
\end{aligned}
$$

(A1) 2
Table (not required)

t	0	0.5	1	1.5	2	2.5	3	3.5	4
v	0	1.125	1	0.375	0	0.625	3	7.875	16

(c)

$$
\text { (i) } \begin{aligned}
& \frac{\mathrm{d} v}{\mathrm{~d} t}=3 t^{2}-8 t+4 \\
& 3 t^{2}-8 t+4=0 \\
& (3 t-2)(t-2)=0 \\
& t=\frac{2}{3}, t=2
\end{aligned}
$$

(A1)
(M1)
(M1)
(A1)(A1)
(ii) The function is changing from acceleration to deceleration or velocity changes from increasing to decreasing
or kite is stationary or velocity is zero
Note: Award (R1) for acceleration, (R1) for deceleration. Gradient $=0$
(A1)
8
(d)

(A5) 5
Note: Award (A1) for axes correctly labelled, (A1) if scales correct, (A1) for correct general shape of curve, (A1) for each turning point in approximately the correct place.
(e)

time t	motion
$t=0$	stopped
$0<t<\frac{2}{3}$	accelerating (increasing in velocity)
$t=\frac{2}{3}$	stopped accelerating
$\frac{2}{3}<t<2$	decelerating (decreasing in velocity)
$t=2$	stopped decelerating
$2<t \leq 4$	accelerating
	Note: Stops may be left out

(A1) 3
15. (a) (i) $f^{\prime}(x)=6 x^{2}-6 x-12(+0)=6 x^{2}-6 x-12$

Note: A ward (A2) for all four items correctly differentiated, (A1) for 3 correct derivatives.
(ii) $f^{\prime}(3)=6(3)^{2}-6(3)-12=24$
(M1) (A1) 4
(b) $6 x^{2}-6 x-12=-12$
$\Rightarrow 6 x^{2}-6 x=0$
$\Rightarrow 6 x(x-1)=0$
$\Rightarrow x=0$ or $x=1$
(A1) (A1) 3
(c) (i) $\quad f^{\prime}(x)=0 \Rightarrow 6 x^{2}-6 x-12=0$
$\Rightarrow 6\left(x^{2}-x-2\right)=0$
$\Rightarrow 6(x-2)(x+1)=0$
$\Rightarrow x=2$ or $x=-1$
(ii) $x=2, y=-15$

Therefore, minimum is $(2,-15)$
(A1) 6
(d) $\quad x<-1$ and $x>2$
(A1) (A1) 2

