Y11 MATHEMATICAL STUDIES - SAW REVIEW 2012 solutions

1. (a)

$L(\mathrm{cm})$	f	Σf
≤ 29	2	2
≤ 31	4	6
≤ 33	8	14
≤ 35	21	35
≤ 37	30	65
≤ 39	18	83
≤ 41	12	95
≤ 43	5	100

(A2) 2

Notes: Award (Al) for four correct entries in the column headed Σf . Award (A2) for all 8 correct.

(c)	(i)	Median length of mackerel = $36 \text{ cm} \pm 0.2 \text{ cm}$ = 36 cm	(M1) (A1)	
	(ii)	Interquartile range of mackerel length = 3.8 ± 0.2 cm = 4 cm	(M1) (A1)	4*

*(read from candidate's curve)

2. (a)

(b)

Time less than (mins)	Cumulative frequency
10.5	0
15.5	7
20.5	20
25.5	45
30.5	73
35.5	93
40.5	100

Note: Award (A1) for each correct column

Note: Award (A1) for the correct scale and labelling. Award (A2) for plotting 6 or 7 points correctly, (A1) for plotting 4 or 5 points correctly.

(c)	(i)	12 ± 1 students (allow ft)	(A1))	
	(ii)	31 ± 0.5 minutes (allow ft)	(A1)	2	

[7]

[9]

(A2)

2

3. (a)
$$Mean = \frac{60}{10}$$

= 6 (A1) (C1)

(b) Mode = 2 (A1) (C1)

(c) 2, 2, 2, 4, 5, 6, 8, 9, 10, 12
Median =
$$\frac{\uparrow}{2}$$
 (M1)
= 5.5 (A1) (C2)

[4]

4.	(a)	19 or 20 people	(A1)
	(b)	Median salary = 15000 GBP	(A1)
	(c)	80% of 200 = 160	
		23000 ± 500	(M1) (A1)

[4]

[5]

5.	(a)	63 kg			1	
	(b)	(i)	70.5 kg	(G1)		
		(ii)	14.6 kg (also accept 15.2 kg)	(G1)	2	
	(c)	Tota Tota	l weight of 12 students = 846 kg l weight of 11 students = $11 \times 70 = 770$ kg	(M1)		
		Weig	ght of student who left = $846 - 770 = 76 \text{ kg}$	(A1)	2	

6.	(a)	Median = 45	(A1)
		Note: Accept 45.5	(C1)
	(b)	53 – 37 for identifying correct quartiles	(A1)
		= 16 for correct answer to subtraction	(A1)(ft)
		<i>Note:</i> (<i>ft</i>) on their quartiles	(C2)

Note: Award (A0) if lines go right through the box. (C3)

[6]

7. (a) At B, the gradient is zero. From B to C, the gradient is negative. At C, the gradient is zero. From C to D, the gradient is positive. At D, the gradient is zero. (A3) 3 *Note: Award [½ mark] for each correct statement and round*

(b) Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{f(a+4) - f(a)}{(a+4) - (a)}$ (M2)

Note: Award (M1) for f(a + 4)

$$=\frac{f(a+4) - f(a)}{4}$$
(A1) 3

[6]

8. (a) 2x + y

(A1)

- (b) 2500 = 2x + y (M1) 2500 - 2x = y (AG) 1
- (c) (i) Area A(x) = xy (M1) = x(2500 - 2x) (M1) = $2500x - 2x^2$ (AG) 2

(ii)	A'(x) = 2500 - 4x	(A1)	1
(iii)	A'(x) = 0 0 = 2500 - 4x 4x = 2500 x = 625	(M1) (M1) (A1)	3
(iv)	$A(x) = 2500x - 2x^{2}$ $A(625) = 2500 \times 625 - 2(625)^{2}$ = 781250 $= 781000 \text{ m}^{2}$	(M2) (A1)	3

9. (a)

For labels and scales. 3 maxima drawn. 2 minima drawn. General shape

(b) (0.827, 4.12) (G2) 2

(c) 0, 1.8, 3.6, 5.4, 7.2, 9 (for any one of these answers). (G1) 1

(d) r = 1 (G2) Perfect positive correlation. (R1) 3

(e) y = 3x (accept y = 3x + 0.000274) (G2) 2

 (f)
 line on graph
 (A1)
 1

 (g)
 (0, 0) or (1.16, 3.48)
 (G1) (G1)
 2

[16]

[11]

(A1)

(A1)

(A1)

(A2)

5

10. (a)

[15]

11. (a) $f'(x) = 3x^2 - 6x + 3$ (A2) 2

(b)

f(x) -7 0 1 2 9 $f'(x)$ 12 3 0 3 12 $(A3)$	x	-1	0	1	2	3	
f'(x) 12 3 0 3 12 (A3)	f(x)	-7	0	1	2	9	
	f'(x)	12	3	0	3	12	(A3)

(c)

12. (a) $3x^{-2}$

Note: Award mark for –2.

(A1) (C1)

3

[8]

(b)
$$-2 \times 3x^{-3}$$
 (A1)(A1)
Note: Award (A1) for -2×3 , (A1) for -3 .
 $= -6x^{-3}$ (A1)
 $= -\frac{6}{x^3}$ (A1)
(A1)(A1) (C5)
Note: Award (A1) for positive power on denominator, (A1) for 3.

[6]

13. (a)
$$f'(x) = 3x^2 + 14x - 5$$
 (A1)(A1)(A1) 3

(b)
$$f'(1) = 3 + 14 - 5 = 12$$
 (M1)(A1) 2

(c)
$$3x^2 + 14x - 5 = 0$$
 (M1)
 $(3x - 1)(x + 5) = 0$

$$x = \frac{1}{3}or - 5$$
 (A1)(A1) (or (G3)) 3

(d)
$$\left(\frac{1}{3}, 3.15\right)$$
 (-5,79) (A1)(A1) (or (G2)) 2

Note: Award (A1) for axes labelled, (A1) for maximum, (A1) for minimum, (A1) for y-intercept.

[14]

2

14. (a) (i)
$$v(1) = 1^3 - 4(1)^2 + 4(1)$$

= 1 ms⁻¹ (A1)

(ii)
$$v(0.5) = (0.5)^3 - 4(0.5)^2 + 4(0.5)$$

= 1.125 ms⁻¹ accept 1.13 (3 s.f.) (A1) 2

(b)
$$a = v(1.5) = 1.5^3 - 4(1.5) + 4(1.5)$$

= 0.375 (A1)

$$b = v(3) = 3^{3} - 4(3^{2}) + 4(3)$$

= 3 (A1)
Table (not required)

t	0	0.5	1	1.5	2	2.5	3	3.5	4
v	0	1.125	1	0.375	0	0.625	3	7.875	16

(c) (i)
$$\frac{dv}{dt} = 3t^2 - 8t + 4$$
 (A1)

$$3t2 - 8t + 4 = 0$$
(M1)
(3t - 2)(t - 2) = 0
(M1)

$$t = \frac{2}{3}, t = 2$$
 (A1)(A1)

(ii) The function is changing from acceleration to deceleration *or* velocity changes from increasing to decreasing

Note: Award (A1) for axes correctly labelled, (A1) if scales correct, (A1) for correct general shape of curve, (A1) for each turning point in approximately the correct place.

time t	motion			
t = 0	stopped			
$0 < t < \frac{2}{3}$	accelerating (increasing in velocity)	(A1)		
$t = \frac{2}{3}$	stopped accelerating			
$\frac{2}{3} < t < 2$	decelerating (decreasing in velocity)	(A1)		
<i>t</i> = 2	stopped decelerating	(A1)	3	
$2 \le t \le 4$	accelerating Note: Stops may be left out		I	[20]

15.	(a)	(i)	$f'(x) = 6x^2 - 6x - 12 (+0) = 6x^2 - 6x - 12$	(A2)
			<i>Note</i> : Award (A2) for all four items corre (A1) for 3 correct derivatives.	ctly differentiated,
		(ii)	$f'(3) = 6(3)^2$ 6(3) $12 = 24$	$(\mathbf{M}1)$ $(\mathbf{A}1)$

(e)

(ii)
$$f'(3) = 6(3)^2 - 6(3) - 12 = 24$$
 (M1) (A1) 4
(b) $6x^2 - 6x - 12 = -12$ (M1)
 $\Rightarrow 6x^2 - 6x = 0$
 $\Rightarrow 6x (x - 1) = 0$
 $\Rightarrow x = 0 \text{ or } x = 1$ (A1) (A1) 3

(c)	(i)	$f'(x) = 0 \Longrightarrow 6x^2 - 6x - 12 = 0$	(M1)	
		$\Rightarrow 6 (x^2 - x - 2) = 0$		
		$\Rightarrow 6(x-2)(x+1) = 0$	(M1)	
		$\Rightarrow x = 2 \text{ or } x = -1$	(A1) (A1)	
	(ii)	x = 2, y = -15	(A1)	
		Therefore, minimum is $(2, -15)$	(A1)	6
(d)	x < -1 and $x > 2$		(A1) (A1)	2

[15]