

7. $(x+8)^2 = 0$ 8. $(5x-2)^2 = 0$

Solve the following equations by the factor method. (9 - 27)

9. $3x^2 - 12x = 0$	10. $2x^2 = 10x$
11. $x^2 + 12x + 27 = 0$	12. $x^2 + 12x + 36 = 0$
$13. \ x^2 - 13x + 40 = 0$	14. $x^2 - 19x + 90 = 0$
$15. \ x^2 + x - 42 = 0$	16. $x^2 + 5x - 84 = 0$
$17. x^2 - 6x - 91 = 0$	18. $x^2 - 10x - 75 = 0$
$19. 6x^2 - 11x - 10 = 0$	20. $12x^2 + 37x + 21 = 0$
21. $30x^2 - 37x + 10 = 0$	$22. 24x^2 + 54x + 12 = 0$
$23. 70x^2 + 32x - 6 = 0$	24. $3x^2 - 48 = 0$

25.
$$(x+3)^2 = 25$$
 26. $x+63 = 20x^2$

27. $3(x^2 + 10) = -23x$

Challenging Question

Solve the following equations by the factor method. (28 - 36)

- **28.** $(2x+3)^2 81 = 0$ **29.** $64 (3x-1)^2 = 0$
- **30.** $4(4x-5)^2 36 = 0$ **31.** (x+7)(x+9) = 3
- **32.** (3x-7)(3x-5) = 8**33.** x(3x-2) - 2x(x-4) = 0
- **34.** 5(5-2x) = 2x(5-2x)**35.** (4x+1)(3x-1) - (2x+3)(1-3x) = 0

36.
$$(8x+3)^2 = (3x-7)(8x+3)$$

37. Solve the equation $x^2 - 2px + p^2 - 16 = 0$, where p is a constant. Express the answers in terms of p.

Solve the following equations by the method of taking square roots. (Express the answers in surd form if necessary.) (38 - 41)

38.
$$(x-5)^2 = 81$$

39. $(x+7)^2 - 36 = 0$
40. $(3x+2)^2 = 64$
41. $5(x-2)^2 = 10$

New Trend Senior Secondary Mathematics — Supplementary Exercise S4A

2.20

Solve the following equations by the quadratic formula. (Express the answers in surd form if necessary.) (42 - 45)

42.
$$x^2 + 17x + 60 = 0$$

43. $x^2 - 14x + 49 = 0$

44.
$$x^2 + 9x + 17 = 0$$

45. $x^2 - 2x + 15 = 0$

Consolidation Question ____

Solve the following equations by the quadratic formula. (Express the answers in surd form if necessary.) (46 - 49)

46. $2x^2 + 3x - 4 = 0$ **47.** $4x^2 + 9x + 3 = 0$ **48.** $3x^2 - 5x - 3 = 0$ **49.** $-2x^2 - 7x - 14 = 0$

Solve the following equations by the method of taking square roots. (Express the answers as surds in their simplest form.) (50 - 53)

Mon-foundation Topics

50. $(x-8)^2 = 40$ **51.** $(2x+3)^2 = 72$ **52.** $2(2x-5)^2 = 48$ **53.** $6(4x+3)^2 = 108$

Solve the following equations. (Express the answers as surds in their simplest form.) (54 - 61)

54. $8-3x^2+6x=0$ **55.** $2x^2-7=2x$

56. $5x^2 = 10x + 7$ **57.** $4x^2 - 5 = 6x$

58.
$$\frac{4-x^2}{2} = x$$
 59. $\frac{x^2}{2} - \frac{x}{5} = \frac{1}{4}$

60.
$$1 - 2x^2 = -\frac{5}{4}x$$
 61. $\frac{2(1-x)}{3} = x(2-x)$

- (a) Consider expanding $(x + \frac{p}{2})^2$, prove that $(x + \frac{p}{2})^2 = \frac{p^2}{4} q$.
 - **(b)** Prove that $x = \frac{-p \pm \sqrt{p^2 4q}}{2}$.
 - (c) Hence solve the following equations. (Express the answers as surds in their simplest form or in the form of a + bi if necessary, where a and b are real numbers.)

End

(i) $x^2 + 4x - 8 = 0$ (ii) $2x^2 - 6x + 9 = 0$

- 69. It is given that the price of a plate with the radius of r cm is $(34 9r + r^2)$. Find the radius of the plate if the price is \$44.
- 70. It is given that the cost of a wardrobe with the height of h m is $(500 + 300h + 200h^2)$. Find the height of the wardrobe which costs \$2 500.

- 71. It is given that $1+2+3+\dots+n=\frac{n(n+1)}{2}$, where *n* is a positive integer. If $1+2+3+\dots+n=120$, find the value of *n*.
- 72. In the figure, the area of rectangle *ABCD* is 130 cm^2 . Find the value of x.

73. If the sum of the square of y and the square of y + 5 is 97, find the values of y.

- 74. The product of two consecutive positive odd numbers is 323.
 - (a) If the smaller number is x, express the larger number in terms of x.
 - (b) Find the two numbers.
- **75.** In the figure, *ABCD* and *PQRS* are squares, and the sum of their areas is 250 cm^2 . Find the area of *PQRS*.

- 76. The perimeter of a rectangle is 50 cm.
 - (a) If the length of the rectangle is ℓ cm, express the width of the rectangle in terms of ℓ .
 - (b) If the area of the rectangle is 154 cm^2 , find the length and width of the rectangle.

77. In the figure, *ABCD* is a trapezium, where $CD \perp AD$. If the area of *ABCD* is 176 cm², find the length of *AD*.

78. In the figure, ABC is a right-angled triangle, where AB = x cm, BC = (2x-1) cm and AC = (3x-7) cm. Find the perimeter of $\triangle ABC$.

- 79. In a rectangular coordinate plane, the distance between the two points (k-2, -k) and (2k-3, k) is 13. Find the values of k.
- 80. In the figure, ABCD is a rectangle. P and Q are the points on AB and AD respectively, where AP = AQ = x cm, BC = 10 cm and CD = 9 cm.

- (a) Express the area of the quadrilateral BCQP in terms of x.
- (b) If the area of the quadrilateral BCQP is 50 cm², find the values of x.

2.24

81. In the figure, a solid consists of a right cylinder and a hemisphere with the radius of r cm. The height of the solid is (2r + 3) cm and the total surface area is 216π cm².

- (a) Find the value of r.
- (b) Find the total volume of the solid. (Express the answer in terms of π .)

Challenging Question ____

82. In the figure, a pole AB of 1.7 m long leans against a vertical wall OA. The foot of the pole B and the wall are 0.8 m apart.

- (a) Find the length of OA.
- (b) If the foot of the pole slides x m away from the wall such that the top of the pole slides down by the same distance, find the value of x.
- 83. In the figure, a rectangular sitting room ABCD is 9 m long and 6 m wide. A rectangular carpet PQRS is placed in the middle of the sitting room such that it is surrounded by a path with a uniform width of x m.

- (a) Express the area of the carpet in terms of x.
- (b) If the area of the carpet is one third the area of the sitting room, find the length and width of the carpet.

84. A square with sides of 3 cm each is cut from each corner of a rectangular cardboard with the length of x cm and the width of (x - 3) cm. Then the cardboard is folded up to form a box without a lid.

(a) Express the capacity of the box in terms of x.

- (b) If the capacity of the box is 375 cm^3 , find the value of x.
- 85. Mandy is 35 years younger than her father and 28 years younger than her mother.
 - (a) If Mandy is currently x years old, express the ages of her father and mother in terms of x.
 - (b) After 5 years, the sum of the ages of Mandy's father and mother is the square of Mandy's age. What is the current age of Mandy?
- 86. The sum of the digits of a two-digit number is 6. Let x be the units digit.
 - (a) Express the tens digit in terms of x.
 - (b) Express the value of the number in terms of x.
 - (c) If the two-digit number is equal to three times the product of its tens and units digits, find the number.

- 87. Find the value of the discriminant of each of the following equations.
 - (a) $x^2 + 7x + 5 = 0$ (b) $x^2 - 22x + 121 = 0$ (c) $4x^2 = 5x - 7$ (d) $3x^2 + 15 = 5x$
 - (e) $2x^2 = 3x$ (f) $4x^2 = -27$

2.26

- 88. Determine the nature of roots of each of the following equations.
 - (a) $x^2 8x 3 = 0$ (b) $4x^2 - 3x + 9 = 0$ (c) $6x^2 + 1 = 0$ (d) $16x^2 - 8x + 1 = 0$ (e) $8 - 3x^2 = 5x$ (f) $20x - 4x^2 = 45$

89. Let k be a constant. Express the discriminant of each of the following equations in terms of k.

(a) $x^{2} + 2x + k = 0$ (b) $-2x^{2} + 8x + k = 0$ (c) $kx^{2} - 3x + 5 = 0$ (d) $2x^{2} + 2kx - 3 = 0$

- 90. (a) Let k be a constant. Express the discriminant of the equation 3x² 16x 4k = 0 in terms of k.
 (b) If the equation has real roots, find the range of values of k.
- **91.** (a) Let k be a constant. Express the discriminant of the quadratic equation $kx^2 + 12x + 4 = 0$ in terms of k.
 - (b) If the equation has two equal real roots, find the value of k.
- 92. (a) Let k be a constant. Express the discriminant of the quadratic equation $5kx^2 + 24x + 6 = 0$ in terms of k.
 - (b) If the equation has no real roots, find the range of values of k.
- **93.** If each of the following quadratic equations has two equal real roots and k is a constant, find the value of k.
 - (a) $kx^2 10x + 1 = 0$
 - **(b)** $3x^2 + 8x + 4k = 0$
- 94. If each of the following quadratic equations has two unequal real roots and k is a constant, find the range of values of k.
 - (a) $2x^2 x k = 0$
 - **(b)** $kx^2 2x + 4 = 0$

jild - up Exercise

- **95.** If each of the following quadratic equations has no real roots and k is a constant, find the range of values of k.
 - (a) $2x^2 9x + k = 0$
 - **(b)** $kx^2 4x 5 = 0$
- **96.** If each of the following quadratic equations has a double real root and k is a constant, find the values of k.
 - (a) $2x^2 + 6x (k+2) = 0$
 - **(b)** $(k-3)x^2 3kx + 36 = 0$
- 97. If each of the following quadratic equations has two distinct real roots and k is a constant, find the range of values of k.
 - (a) $5x^2 6x 2(k 1) = 0$
 - **(b)** $(3k-1)x^2 + 4x 4 = 0$
- **98.** If each of the following quadratic equations has two non-real roots and k is a constant, find the range of values of k.

(a)
$$1 - (k+2)x^2 = 6x$$

- **(b)** 2x(x+3) = 4x + k
- **99.** If each of the following quadratic equations has real roots and k is a constant, find the range of values of k.
 - (a) $3(2x^2 1) = 2(4x + k)$
 - **(b)** $(k-1)x^2 2kx + (k+2) = 0$

- 100. (a) If the quadratic equation $3kx^2 kx + 2 = 0$ has a double real root and k is a constant, find the value of k.
 - (b) From the result of (a), solve the equation $3kx^2 kx + 2 = 0$.
 - 2.28

- 101. (a) If the quadratic equation $kx^2 + (3k 1)x + (2k 1) = 0$ has two equal real roots and k is a constant, find the value of k.
 - (b) From the result of (a), solve the equation $kx^2 + (3k-1)x + (2k-1) = 0$.
- 102. (a) It is given that k is a non-zero constant. Express the discriminant of the quadratic equation $kx^2 + (k-2)x 2 = 0$ in terms of k.
 - (b) Prove that the equation has real roots.
- 103. It is given that $2 = 5x (k^2 + 4)x^2$ is an equation in x. Prove that the equation has no real roots for all real numbers k.

113. Let *m* be a constant. If $\frac{3}{2}$ is a root of the equation $4x^2 - mx + 15 = 0$,

- (a) find the other root.
- (b) find the value of m.

114. Let k be a constant. If the product of roots of the quadratic equation $kx^2 + 5x - (12 - k) = 0$ is -3, find the value of k.

115. If α and β are the roots of the equation $3x^2 + x - 4 = 0$, find the value of each of the following.

- (a) $6\alpha + 6\beta$
- **(b)** $(6\alpha)(6\beta)$

116. If α and β are the roots of the equation $-2x^2 + 4x - 5 = 0$, find the value of each of the following.

(a) $\frac{1}{\alpha\beta}$ (b) $\frac{1}{\alpha} + \frac{1}{\beta}$

117. If α and β are the roots of the equation $x^2 + 7x - 5 = 0$, find the value of each of the following. (a) $\alpha^2 + \beta^2$

(b) $\alpha^{3} + \beta^{3}$

118. If α and β are the roots of the equation $3x^2 - 2x + 8 = 0$, find the value of each of the following.

(a) $(1+2\alpha)(1+2\beta)$ (b) $(\alpha - \frac{1}{\beta})(\beta - \frac{1}{\alpha})$

119. If α and β are the roots of the equation $8x^2 - 2x + 7 = 0$, find a quadratic equation in x with each of the following sets of roots.

(a) -3α , -3β

(b) $2 - \alpha, 2 - \beta$

2.30

- 120. If α and β are the roots of the equation $2x^2 + 3 = 3x$, find a quadratic equation in x with each of the following sets of roots.
 - (a) $\frac{1}{\alpha}, \frac{1}{\beta}$ (b) $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$
- 121. If α and β are the roots of the equation $7x^2 2x + 6 = 0$, find a quadratic equation in x with each of the following sets of roots.
 - (a) $2\alpha 1, 2\beta 1$
 - (b) α^2, β^2
- 122. Let *m* be a constant. If a root of the equation $5x^2 (5m + 1)x + m = 0$ is the reciprocal of the other root, find the two roots.
- 123. Let k be a constant. If a root of the equation $x^2 8x + 2k = 0$ is 3 times the other root, find the value of k.
- 124. Let k be a constant. If α and β are the roots of the equation $3x^2 + 42x + 2k = 0$ and $\alpha : \beta = 4 : 3$, find the value of k.

Challenging Question ____

- 125. It is given that α and β are the roots of the equation $x^2 + kx 2 = 0$, where k > 0. If $\alpha^2 + \beta^2 = 13$,
 - (a) find the value of k.
 - (b) find a quadratic equation in x with roots α^3 and β^3 .
- 126. It is given that *m* is a constant and the sum of roots of the equation $10x^2 + 3mx + 2 = 0$ is greater than the product of roots by $\frac{7}{10}$.
 - (a) Find the value of m.
 - (b) From the result of (a), solve the equation $10x^2 + 3mx + 2 = 0$.

New Trend Senior Secondary Mathematics — Supplementary Exercise S4A

2.31

- 127. If α and β are the roots of a quadratic equation, where $\alpha + \beta = 4$ and $\alpha\beta = 12$,
 - (a) prove that the equation has no real roots.
 - (b) find the complex roots of the equation. (Express the answers as surds in their simplest form if necessary.)
- 128. Let k be a constant. It is given that α and β are the roots of the equation $x^2 kx + 3 = 0$. (a) Prove that $\alpha^2 = k\alpha - 3$.
 - **(b)** Express $\alpha^2 + k\beta$ in terms of k.

129. It is given that *m* and *n* are distinct real numbers and $\begin{cases} 3m^2 + m - 3 = 0\\ 3n^2 + n - 3 = 0 \end{cases}$

- (a) Find the values of m + n and mn.
- (**b**) Find the value of $m^2 + n^2$.
- (c) Find a quadratic equation in x with roots $\frac{1}{m^2}$ and $\frac{1}{n^2}$.

130. It is given that α and β are the roots of the equation $4x^2 - 3x - 1 = 0$.

(a) Find the value of each of the following.

(i)
$$\frac{\alpha + \beta}{2}$$

(ii) $\frac{\alpha\beta}{4}$

(b) Let *m* be a constant. Find a quadratic equation in *x* with roots $\frac{\alpha}{2} - m$ and $\frac{\beta}{2} - m$.

End